## TEST D'ACQUISITIONS SCOLAIRES 3° - 2°

## **MATHÉMATIQUES**

|                                             | DANS CES COLO  |  |
|---------------------------------------------|----------------|--|
| Nom                                         | <b>↓</b>       |  |
| Prénom  Date de l'examen  Date de naissance | Note<br>Totale |  |
| Sexe Nom et adresse de l'école              | Groupe         |  |
| Classe                                      | Temps          |  |
|                                             |                |  |

## N'OUVREZ PAS CE CAHIER AVANT LE SIGNAL

## INSTRUCTIONS

Vous allez faire aujourd'hui des exercices de Mathématiques assez semblables à ceux que vous faites habituellement en classe. La présentation seule en est différente. Vous n'aurez presque rien à écrire. On vous demandera d'indiquer votre réponse par une croix.

Si vous vous êtes trompé et voulez rectifier, entourez nettement d'un cercle la réponse que vous voulez annuler.

N'écrivez rien dans les colonnes situées à droite des exercices. Elles sont destinées à la correction.

Quand on vous aura donné le signal, vous tournerez la page et vous commencerez. Quand vous aurez fini une page, vous passerez à la suivante. Vous ferez tout le cahier sans vous arrêter.

Ne perdez pas trop de temps sur une question qui vous embarrasse. Passez à la suivante, et vous y reviendrez à la fin s'il vous reste du temps.

Quand vous aurez terminé, vous lèverez la main.

Appliquez-vous comme s'il s'agissait d'une composition.

$$1 - \sqrt{16 + 9} = \dots$$

$$\frac{2-3}{2\sqrt{3}}=\cdots$$

$$3 - \sqrt{28} + \sqrt{63} = \dots$$

est fausse parce que .....

le reste est supérieur au double de la racine

$$5 - \sqrt{\frac{5}{4}} = \cdots$$

6 - Si a est positif, alors 
$$\sqrt{\frac{a^3}{a}} = \dots$$

$$\frac{a}{4} = \frac{b}{3} = \frac{c}{5}$$

entraînent l'égalité : ....

$$\frac{a}{4} + \frac{b}{3} + \frac{c}{5} = \frac{a+b+c}{12}$$

$$\frac{a}{4} = \frac{a+b+c}{12}$$

$$\frac{2-\sqrt{3}}{x} = \frac{x}{2+\sqrt{3}}$$

est vérifiée si 
$$x = 1$$
 et si  $x = -1$ 

9 - Les égalités 
$$\frac{x}{y} = \frac{3}{4} \quad \text{et}$$
 
$$x + y = \frac{35}{8}$$
 entraînent . . . .

$$x = \frac{15}{8}, y = \frac{20}{8}$$

| 16 | e monome |    |
|----|----------|----|
|    | $-x^2$   | yz |
|    |          |    |

11 - 
$$\left(-5 \text{ x}^2\text{y}\right)\left(-\frac{4}{5} \text{ x}^3 \text{ y}^2\right) = \dots$$

$$\begin{array}{|c|c|c|c|}
\hline
& \frac{20}{5} x^6 y^2 \\
\hline
& 4 x^5 y^3 \\
\hline
& \frac{4}{25} x^5 y^3
\end{array}$$

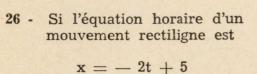
$$\frac{2x-1}{x-4}$$

prend une valeur numérique nulle pour .....

13 - 
$$\left(\frac{1}{2} x^2 - 2y\right)^2 = \dots$$

$$x^2+4=0$$

| 15 - | On résout le système d'équations $2x + 3y + 1 = 0$ $5x - 7y - 12 = 0$ et l'on trouve $x = 1, y = -1.$ Par conséquent, le système possède             | une solution  deux solutions  sûrement un nombre pair de solutions                           |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 16 - | Le système d'équations $3x - 4y + 1 = 0$ $6x - 8y - 1 = 0$                                                                                           | n'a pas de solution<br>possède une solution unique<br>possède une infinité de so-<br>lutions |
| 17 - | L'inéquation $(x + 1)^2 > x^2 + 1$                                                                                                                   | n'a pas de solution  est vérifiée quel que soit le nombre x  est vérifiée si x > 0           |
| 18 - | Par rapport à deux axes de coordonnées perpendiculaires, x'0x, y'0y, les points A (x = 1, y = 3) et B (x = 1, y = -3) sont symétriques par rapport à | l'axe x'0x l'axe y' 0y l'origine 0                                                           |
| 19 - | La droite représentative de la fonction $y = -\frac{x}{3} + 2$ coupe l'axe x' 0x au point d'abscisse                                                 | $ \begin{array}{c} 2 \\ 6 \\ -\frac{2}{3} \end{array} $                                      |
|      | L'affirmation: Les points A (—2, 3) et B (4,—6) sont alignés avec l'origine 0 des axes de coordonnées»                                               | est fausse<br>est vraie<br>n'a pas de sens                                                   |
| 21 - | On a tracé deux axes de coordonnées perpendiculaires x' 0x, y' 0y. Si un point se trouve sur x' 0x, alors                                            | il n'a pas d'ordonnée<br>il n'a pas d'abscisse<br>son ordonnée est nulle                     |
| 22 - | La droite représentative de l'équation $2x + 4y - 9 = 0$ a pour coefficient directeur                                                                | $\frac{2}{-\frac{1}{2}}$                                                                     |


23 - La droite d'équation 
$$ax + 2y = 6$$
 passe par le point A  $(x = 2, y = -2)$ , .....

quelle que soit la valeur de a

| 24 - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | présentatives | de |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|----|
|      | fonction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |               |    |
|      | y =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2x - | - 3           |    |
|      | y =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3    |               |    |
|      | State of the state |      |               |    |

| ont un point commun d'ordonnée          |
|-----------------------------------------|
| n'ont pas de point commun               |
| ont un point commun d'abscisse<br>nulle |

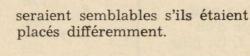
| 25 - | La droite passant par l'origine 0       |
|------|-----------------------------------------|
|      | et le point A $(x=2, y=-\frac{3}{2})$ , |
|      | a pour équation                         |

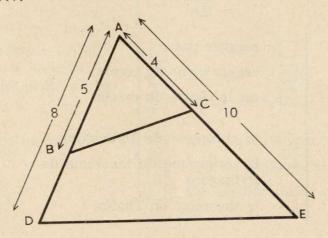


dans le sens positif de la

$$\square$$
 ces mobiles se croisent à la date  $t=0$   $\square$  le second dépasse le premier à

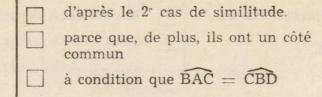
27 - Deux mobiles se déplacent sur l'axe x'0x et leurs équations horaires respectives sont 
$$x = -t + 4$$
  $x = 3t + 4$ 

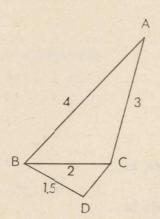

la date 
$$t = 0$$
ces mobiles ne se rencontrent pas


$$\begin{array}{|c|c|c|}
\hline & 2, \text{ quel que soit k} \\
\hline & 2, \text{ si k} \neq 1 \\
\hline & 1, \text{ quel que soit k}
\end{array}$$

distincts, le nombre de points M de la droite AB tels que
$$\frac{MA}{MB} = k \text{ (avec } k > 0) \text{ est}....$$

29 - Sur la figure ci-dessous on suppose


AE = 10 Il en résulte que les triangles ABC et AED ....






30 - Les triangles ABC et BCD de la figure sont tels que :

$$\frac{AB}{BC} = \frac{AC}{BD} = 2.$$
Ils sont semblables, ....





- 31 Deux triangles sont isocèles. Les angles à la base du premier ont même mesure que l'angle opposé à la base du second. On en déduit que ces triangles
- sont semblables si les angles à la base du premier mesurent 60°
- sont semblables dans tous les cas.
- ne sont semblables en aucun cas.
- 32 Les côtés d'un triangle ABC ont pour mesures 4, 5, 6.

Les angles d'un triangle DEF ont pour mesures 48°, 60°, 72°

Or 
$$\frac{4}{48} = \frac{5}{60} = \frac{6}{72}$$

Il en résulte que les triangles ABC et DEF .....

sont semblables

ne peuvent être comparés par un cas de similitude

sont proportionnels

- 33 Le rayon d'un cercle a pour mesure 5. La distance d'un point au centre est 3. La puissance de ce point par rapport au cercle est égale à ......
- -16

34 - Si la puissance d'un point par rapport à un cercle est nulle,

ce point .....

- n'existe pas
- est un point du cercle
- est le centre du cercle

35 - Si les mesures a, b, c des côtés d'un triangle sont telles que  $a^2 = b^2 + c^2$ 

on peut affirmer que ce triangle est rectangle, en appliquant .....

le théorème de Pythagore

la réciproque du théorème de Pythagore

le théorème de Thalès.

36 - Sur la figure ci-dessous deux cercles sont sécants en A et B, un point M appartient à la droite AB et il est extérieur aux deux cercles. Par M, on a tracé la tangente MC à l'un des cercles et la sécante MDE à l'autre cercle.

Alors l'égalité

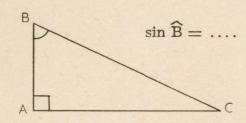
 $MC^2 = \overline{MD}$  ,  $\overline{ME}$  .....

- est fausse parce que les points C, D, E n'appartiennent pas à l'un des deux cercles seulement.
- est vraie si l'on démontre d'abord que les points C, D, E appartiennent à un troisième cercle
- est vraie parce que les deux membres de l'égalité sont égaux à

MA . MB



37 - La hauteur d'un triangle équilatéral a pour mesure


 $\frac{a}{4}$ 

C'est impossible.

Ce triangle ne peut être que la moitié d'un triangle équilatéral.

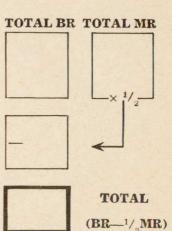
Le côté du triangle a pour mesure — .

38 -



39 - On sait que cos  $60^{\circ} = 0.5$  et

on a trouvé cos  $\alpha = 0.54$ . On peut en déduire pour l'angle


aigu α .....

40 - On a trouvé pour un angle aigu α

 $\sin \alpha = 0.3$ 

 $\cos \alpha = 0.4$ 

- $\frac{AC}{BC}$
- $\Box \frac{AB}{BC}$
- $\frac{AC}{AB}$
- α < 60°</li>
  - a > 60°
- Ces résultats sont vraisemblables.
- Il y a certainement une faute.
  - Ces résultats sont corrects.

